Open Access Open Access  Restricted Access Subscription or Fee Access

Ocular Drug Delivery System: Challenges and Opportunities

Umesh D Laddha, Sanjay J. Kshirsagar

Abstract


Eye is most sensitive organ of body which is highly protected to prevent entry of any exogenous substance. This defence mechanism of eye renders the development of ocular drug delivery system as the challenging task to ophthalmic formulation scientist. Knowledge of anatomy, physiology and barriers for transportation of drug at different target site of eye is essential to develop successful ocular formulation. Topical administration of drug in the form of eye drop is most preferable approach to treat various elements of eye. However; because of several dominating factors presents at ocular site result in poor ocular bioavailability (around 10% of total administered dose). In last two decades, several Novel Ocular Drug Delivery Systems (NODDS) like ocular inserts, in-situ formulation and nano-technology based products have been developed to improve ocular treatment. Current article intends to summarize basics required to know for development of ophthalmic formulation, conventional treatment with some modifications to enhance retention time and recently developed NODDS.

 

Keywords: Ophthalmic formulations, anatomy and physiology, novel drug delivery systems, ocular inserts, in-situ, nano-formulation

Cite this Article

Laddha Umesh D, Kshirsagar Sanjay J. Ocular Drug Delivery System: Challenges and Opportunities. Research and Reviews: A Journal of Pharmaceutical Science. 2018; 9(3): 14–30p


Full Text:

PDF

References


Rajoria, G., Gupta, A., 2012. In situ gelling system: a novel approach for ocular drug delivery. Am. J. PharmTech Res., 2, 2249-3387.

Kaul, S., Kumar, G., Kothiyal, P., 2012. An insight into ocular insert. Int. J. Pharm. and Pharm. Sci. Res., 3, 1905-1912.

Almeida, H., Amaral, M. H., Loba, P., Lobo, J. M. S., 2013. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discovery Today, 1-13.

Patel, V., Agrawal Y. K., 2011. Current status and advanced approach in ocular drug delivery system. J. Global Trends in Pharm. Sci., 2, 131-48.

Rathore, K. S., 2010. In situ gelling ophthalmic drug delivery system: an overview. Int. J. Pharm. Sci. Res., 2, 30-34.

Patel, A., Cholkar, K., Agrahari, V., Mitra, A. K., 2013. Ocular drug delivery systems: an overview. World J. Pharmacol., 2, 47-64.

Singh, V., Bushetti, S. S., Raju, S. A., Ahmad, R., Singh, M., 2011. Glaucoma: A treatment by hydrogel. An Int. J. of Pharm. Sci., 2, 174-183.

Song, J., Bi, H., Xie, X., Guo, J., Wang, X., Liu, D., 2013. Preparation and evaluation of Sinomenine HCL in situ gel for uveitis treatment. Int. Immunopharmacol., 17, 99-107.

Bhalerao, A. V., Singh, S. S., 2011. In situ gelling ophthalmic drug delivery system for glaucoma. Int. J. of Pharm. and Bio Sci., 2, 7-14.

Kuno, N., Fujii, S., 2011. Recent advance in ocular drug delivery systems. Polymers, 3, 193-221.

Srividya, B., Cardoza, R. M., Amin, P. D., 2001. Sustained ophthalmic delivery of ofloxacine from pH triggered in situ gelling system. J. Control. Rel., 73, 205–211.

Patil, A. P., Tagalpallewar, A. A., Rasve, G. M., Bendre, A. V., Khapekar, P. G., 2012. A novel ophthalmic drug delivery systems: in situ gel. Int. J. Pharm. Sci. Res., 3, 2938-2946.

Dhanapal, R., Ratna, J. V., 2012. Ocular drug delivery system- a review. Innov. drug discovery, 2, 4-15.

Atram, S. C., Bobade, N. N., Wankhade, V. P., Pande, S. D., Tapar, K. K., 2013. Current trends towards an ocular drug delivery system: review. Int. J. Pharm. and Pharm. Sci. Res., 3, 28-34.

Suryawanshi, S. S., Kunjwani, H. K., Kawade, J. V., Yadav, D. J., 2012. Novel polymeric in situ gels for ophthalmic drug delivery system. Int. J. Res. Pharm. and Sci., 2, 67-83.

Kumar, M., Kulkarni, G. T., 2012. Recent trends in ophthalmic drug delivery system. Int. J. Pharm. and Pharm. Sci., 4, 387-394.

Willoughby, C. E., Ponzin, D., Ferrari, S., Labo, A., Landau, K., Omidi, Y., 2010. Anatomy and physiology of the human eye: effects of muchopolysaccharidoses disease on structure and function-a review. Clin. Exp. Ophthalmol., 38, 2-11.

Avis, K. E., Liberman, H. A., Lachman, L., 1992. Pharmaceutical dosage forms, Parentral medication, Vol. 1, 2nd edition, pp. 115-193.

Phate, R. P., 2006. Anatomy physiology and health education. Career publications, 3rd edition, pp. 254-262.

Waugh, A., Grant, A., 2006. Ross and wilson, anatomy and physiology in health and illness. Churchill Livingstone, Elsevier, 11th edition, pp. 190-205.

Kumar, A., Malviya, R., Sharma, P. K., 2011. Recent trends in ocular drug delivery : a short review. Eur. J. Appl. Sci., 3, 86-92.

Bijlani, R. L., 2004. A text book for medical student: understanding medical physiology. Jaypee publication, 3rd edition, pp. 716.

Tangri, P., Khurana, S., 2011. Basics of ocular drug delivery systems. Int. J. Res. in Pharm. and Bio. Sci. 2, 1541-1552.

Pandya, T. P., Modasiya, M. K., Patel, V. M., 2011. Ophthalmic in situ gelling system. Int. J. Pharm. Life Sci., 2, 730-738.

Urtti, A., 2006. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Delivery Rev., 58, 1131-35.

Mitra, K. A., 1993. Ophthalmic drug delivery systems. Marcel Dekker, Inc. Reference to a chapter in an edited book: Hughes, P. M., Macha, Sreeraj, Mitra, K. A. Overview of ocular drug delivery. pp. 1-6.

Laddha, U. D., Mahajan H. S., 2017. An insight to ocular in-situ gelling system. Int. J. of Adv. In Pharma., 6(02), 31-40.

Mohan, H., 2006. Text book of pathology. Jaypee brother publication, 15th edition, pp. 517-524.

Tortora, G. J., Derricksons, B., 2006. Principles of anatomy and physiology. John willey and sons, inc, 11th edition, pp. 585-92.

Guyton, A. C., Hall, J. E., 2005. Text book of medical physiology. Saunders; an imprint of Elsevier, 10th edition, pp. 660.

Cheng, J. W., Cheng, S. W., Gao, L. D., Lu, G. C., Wei, R. L., 2012. Intraocular pressure lowering effect of commonly used fixed combination drug with Timolol: A systematic review and meta-analysis. PLOS ONE, 7, 1 – 11.

Gupta, S., Vyas, S. P., 2010. Carbopol/chitosan based pH Triggered in situ gelling system for ocular delivery of Timolol Maleate. Sci. Pharmaceutica 78, 959-976.

Laddha, U. D., Kokare, C. K., Tagalpallewar, A. A., 2016. Development, optimization and enhancement of transcorneal permeation of timolol maleate from a novel in situ gel. World J. Pharma. Res., 5(9), 965-985.

www.webmd.com/eye-health/glaucoma-eyes (accessed on 12 Feb 2018)

Kumar, L., Singh, R. P., Singh, S. G., Kumar, D., 2011. In situ gel: a novel system for ocular drug delivery. Int. J. Pharm. Sci. Rev. and Res., 9, 83-91.

Patel, A., Cholkar, K., Agrahari, V., Mitra, A. K., 2013. Ocular drug delivery systems: an overview. World J. Pharmacol., 2, 47-64.

Rajasekaran, A., Arul Kumaran, K. S. G., Preetha, J. P., Karthika. K., 2010. A comparative review on conventional and advanced ocular drug delivery formulations. Int. J. PharmTech Res., 2, 668-674.

Gratieri, T., Gelfuso, G. M., Freitas, O., Rocha, E. M., 2011. Enhancing and sustaining the topical ocular delivery of Fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur. J. Pharm. Biopharm., 79, 320-327.

Lin, H. R., Sung, K. C., 2000. Carbopol/pluronic phase change solution for ophthalmic drug delivery. J. Control. Rel., 69, 379-388.

Cao, Y., Zhang, C., Shen, W., Cheng, Z., Yu, L., Ping, Q., 2007. Poly (N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Rel., 120, 186-194.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Research and Reviews: A Journal of Pharmaceutical Science