Open Access Open Access  Restricted Access Subscription or Fee Access

SUBSTITUTED TRI-PEPTIDE DERIVATIVES SYNTHESIS, CHARACTERIZATION

Vissarapu Naga Lakshmi, Dr.R. Govindarajan, Dr. A. Anil kumar

Abstract


By using  amino acid residues the peptides can be synthesized using either solid phase peptide synthesis or solution phase peptide synthesis. In this research article we preferred solution phase peptide synthesis because the formed intermediate unnecessary products can be easily isolated and purified. On through literature survey we found that the solution phase synthesis of tripeptides employing HATU/HOBt as coupling agent by using microwave irradiation[720 watts] has been mentioning in this article. The coupling reaction completes within 30-45 seconds. We used totally 5-steps for the Tri-peptides synthesis and each step is detailed in the articleFinally, NMR and mass spectroscopic methods were used to characterize the synthesized tripeptide derivatives.

Full Text:

PDF

References


Abrar Alzaydi, Rahul Islam Barbhuiya, Winny Routray, Abdallah Elsayed, Ashutosh Singh. Bioactive peptides: Synthesis, applications, and associated challenges. Food Bioengineering 2023, 12 https://doi.org/10.1002/fbe2.12057

Hisashi Masui, Shinichiro Fuse. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Organic Process Research & Development 2022, 26 (6) , 1751-1765. https://doi.org/10.1021/acs.oprd.2c00074

Yuma Otake, Kyohei Adachi, Yoshiaki Yamashita, Natsumi Iwanaga, Hirokatsu Sunakawa, Taiki Shamoto, Jun-ichi Ogawa, Atsushi Ito, Yutaka Kobayashi, Keiichi Masuya, Shinichiro Fuse, Daisuke Kubo, Hidenosuke Itoh. A liquid-phase continuous-flow peptide synthesizer for preparing C-terminal free peptides. Reaction Chemistry & Engineering 2023, 20 https://doi.org/10.1039/D2RE00453D

Kaminski, Z.J.; Paneth, P.; Rudzinski, J.A. Study on the activation of carboxylic acids by means of 2-chloro-4,6-dimethoxy-1,3,5-triazine and 2-chloro-4,6-diphenoxy-1.3.5-triazine. J. Org. Chem. 1998, 63, 4248–4225.

Hisashi Masui, Shinichiro Fuse. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Organic Process Research & Development 2022, 26 (6) , 1751-1765. https://doi.org/10.1021/acs.oprd.2c00074

Ayman El‐Faham, Fernando Albericio. Carpino's protecting groups, beyond the Boc and the Fmoc. Peptide Science 2020, 112 (4) https://doi.org/10.1002/pep2.24164

Yeon Sun Lee. Gram‐Scale Preparation of C‐Terminal‐Modified Enkephalin Analogues by Typical Liquid‐Phase Peptide Synthesis. Current Protocols in Protein Science 2019, 98 (1) https://doi.org/10.1002/cpps.97

Manashjyoti Konwar, Nageshwar D Khupse, Prakash J Saikia, Diganta Sarma. A potential greener protocol for peptide coupling reactions using recyclable/reusable ionic liquid [ $$hbox {C}_{4}hbox {-DABCO}][hbox {N(CN)}_{2}$$ C 4 -DABCO ] [ N(CN) 2 ]. Journal of Chemical Sciences 2018, 130 (5) https://doi.org/10.1007/s12039-018-1461-0

Decoene K.W., Vannecke W., Passioura T., Suga H., Madder A. PyrroleMediated Peptide Cyclization Identified through Genetically Reprogrammed Peptide Synthesis. Biomedicines. 2018;6:99

Caspar A, Reichert J. Future directions for peptide therapeutics development. Drug DiscovToday 2013;18:807–817.

Atherton E, Sheppard RC. The fluorenylmethoxycarbonyl amino protecting group. In: Udenfriend S, Meienhofer J, editors. The Peptides. Academic Press; New York: 1987. Pp. 1–38.

R.B. Merrifield, Automated synthesis of peptides; Science, 150 (1965), pp. 178-185, 10.1126/science.150.3693.178

Adam Přibylka, Viktor Krchňák, Eva Schütznerová. Environmentally Friendly SPPS II: Scope of Green Fmoc Removal Protocol Using NaOH and Its Application for Synthesis of Commercial Drug Triptorelin. The Journal of Organic Chemistry 2020, 85 (14) , 8798-8811.

Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Oxyma: an efficient additive for peptide synthesis to replace benzotriazole-based HOBt and HOAt with a lower risk of explosion. ChemEur J 2009;15:9394 – 9403.

B S. Patil, G R Vasanthakumar, V Suresh babu; Microwave assisted wolff rearrangement: A facile method for the synthesis of Fmoc –β-amino acids Letters in peptide science, 9; 2002, 231-233.

N S Sudarshan & V Suresh babu; Microwave accelerated high speed solution synthesis of peptides employing HATU/HOAt; Indian j.of chem, 44B, 2005, 1509-1511.

James ESheppeck, HeidiKar, HuiHong; A convenient and scaleable procedure For removing the Fmoc group in solution; Tetrahedron Letters; 2000; 41[28]; 5329-5333

Nishita Singh, Roohi Kesherwani, Arun Kumar Tiwari and Dilip Kumar Patel; A review on diabetes mellitus; The Pharma Innovation Journal 2016; 5(7): 36-40

Henninot, A.; Collins, J. C.; Nuss, J. M. The Current State of Peptide Drug Discovery: Back to the Future?. J. Med. Chem. 2018, 61, 1382, DOI: 10.1021/acs.jmedchem.7b00318

Hojo, K.; Ichikawa, H.; Onishi, M.; Fukumori, Y.; Kawasaki, K. Peptide synthesis “in water” by a solution-phase method using water-dispersible nanoparticle Boc-amino acids. J. Pept. Sci. 2011, 17, 487–492.




DOI: https://doi.org/10.37591/rrjodfdp.v10i1.1309

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Research & Reviews: A Journal of Drug Formulation, Development and Production