Open Access Open Access  Restricted Access Subscription or Fee Access

Marburg Virus a Global Infectious Disease: A Review

Sumel Ashique

Abstract


This single negative-stranded RNA virus was first found in 1967 in the German cities Marburg and Frankfurt and Belgrade. The reason behind this virus disease was infected grivet monkeys were imported from Uganda. This virus is often called Vervet monkey disease due to the initial association between non-human primates and viruses. This virus is the etiologic agent of Marburg hemorrhagic fever in humans and non-human primates. Replication mainly occurs through the human endothelial cell. In 2009 it was reported that Egyptian fruit bats (Rousettus aegyptiacus) were involved as a reservoir for the virus. Transmission mainly occurs through body fluids, unprotected sex, and broken and wounded skin. After incubation periods the symptoms such as chills, headache, myalgia, stomach pain appears. There is no such specific treatment for that virus except fluid therapy and proper oxygen supply. Modern diagnosis techniques including ELISA, PCR, etc.

Full Text:

PDF

References


Martini GA. Marburg virus disease. Postgrad Med J. 1973; 49(574):542-6.

Peterson AT, Holder MT. Datasets: Phylogenetic assessment of filoviruses: how many lineages of Marburg virus. Ecol. Evol. 2012; 2(8): 1826–1833

Brauburger K, Hume AJ, Mühlberger E, et al. Forty-five years of Marburg virus research. Viruses. 2012; 4(10):1878-927.

Falzarano D, Feldmann H. Marburg virus. (2008): 272-280.

Towner JS, Pourrut X, Albariño CG, et al. Marburg virus infection detected in a common African bat. PLoS One. 2007; 2(8): e764. doi: 10.1371/journal.pone.0000764

Paweska JT, Jansen van Vuren P, Fenton KA, et al. Lack of Marburg virus transmission from experimentally infected to susceptible in-contact Egyptian fruit bats. J. Infect. Dis. 2015; 212: S109-18. doi: 10.1093/infdis/jiv132. Epub 2015 Apr 2.

Martini GA, Schmidt HA. Spermatogenic transmission of the" Marburg virus". (Causes of" Marburg simian disease"). Klin Wochenschr. 1968; 46(7):398-400. doi: 10.1007/BF01734141.

https://www.cdc.gov/vhf/marburg/transmission/index.html

Smith CG, Simpson DI, Bowen ET, et al. Fatal human disease from vervet monkeys. Lancet. 1967; 290(7526):1119-21.

Gear JS, Cassel GA, Gear AJ, et al. Outbreak of Marburg virus disease in Johannesburg. Br. Med. J. 1975; 4(5995):489-93.

Conrad JL, Isaacson M, Smith EB, et al. Epidemiologic investigation of Marburg virus disease, Southern Africa, 1975. Am J Trop. Med. Hyg. 1978; 27(6):1210-5.

Smith DH, Isaacson M, Johnson KM, et al. Marburg-virus disease in Kenya. Lancet. 1982; 319(8276):816-20.

Beer B, Kurth R, Bukreyev A. Characteristics of Filoviridae: Marburg and Ebola viruses. Naturwissenschaften. 1999; 86(1):8-17.

Bertherat E, Talarmin A, Zeller H. Democratic Republic of the Congo: between civil war and the Marburg virus. International Committee of Technical and Scientific Coordination of the Durba Epidemic. Med. Trop: revue du Corps de sante colonial. 1999; 59(2):201-4.

Hovette P. Epidemic of Marburg hemorrhagic fever in Angola. Med. Trop: revue du Corps de sante colonial. 2005; 65(2):127-8.

Towner JS, Amman BR, Sealy TK, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS. Pathogens. 2009; 5(7). https://doi.org/10.1371/journal.ppat.1000536

Timen A, Koopmans MP, Vossen AC, et al. Response to imported case of Marburg hemorrhagic fever, the Netherlands. Emerg. Infect. Dis. 2009 Aug; 15(8):1171-5. doi: 10.3201/eid1508.090015

Selvaraj SA, Lee KE, Harrell M, et al. Infection rates and risk factors for infection among health workers during Ebola and Marburg virus outbreaks: a systematic review. J. Infect. Dis. 2018; 218: S679-89.

https://www.who.int/csr/don/archive/disease/marburg_virus_disease/en

Ligon BL. Outbreak of Marburg hemorrhagic fever in Angola: a review of the history of the disease and its biological aspects. Semin. Pediatr. Infect. Dis.2005;16: 219-224

Grolla A, Lucht A, Dick D, et al. Laboratory diagnosis of Ebola and Marburg hemorrhagic fever. Bull. Soc. Pathol. Exot. 2005; 98(3):205-9.

Grolla A, Jones SM, Fernando L, et al. The use of a mobile laboratory unit in support of patient management and epidemiological surveillance during the 2005 Marburg Outbreak in Angola. PLoS. Negl. Trop. Dis. 2011;5: e1183. https://dx.doi.org/10.1371%2Fjournal.pntd.0001183

Towner JS, Sealy TK, Ksiazek TG, et al. High-throughput molecular detection of hemorrhagic fever virus threats with applications for outbreak settings. J. Infect. Dis. 2007 ; 196: S205-12

Schnittler HJ, Mahner F, Drenckhahn D, et al. Replication of Marburg virus in human endothelial cells. A possible mechanism for the development of viral hemorrhagic disease. J. Clin. Investig. 1993; 91(4):1301-9.

Smith DH, Johnson BK, Isaacson M et al. Marburg virus disease in Kenya. Lancet. 1982;1(8276):816-20. doi: 10.1016/s0140-6736(82)91871-2.

Hensley LE, Alves DA, Geisbert JB, et al. Pathogenesis of Marburg hemorrhagic fever in cynomolgus macaques. J. Infect. Dis. 2011;204: S1021-31

Shifflett K, Marzi A. Marburg virus pathogenesis–differences and similarities in humans and animal models. Virol. J. 2019; 16(1):1-2.

Geisbert TW, Strong JE, Feldmann H. Considerations in the use of nonhuman primate models of Ebola virus and Marburg virus infection. J. Infect. Dis. 2015; 212: S91-7.

Simpson DI, Zlotnik I, Rutter DA. Vervet monkey disease. Experiment infection of guinea pigs and monkeys with the causative agent. Br. J. Exp. Pathol.1968; 49(5):458.

Cross RW, Mire CE, Agans KN, et al. Marburg and Ravn viruses fail to cause disease in the domestic ferret (Mustela putorius furo). J. Infect. Dis.2018; 218: S448-52.

Wong G, Zhang Z, He S, et al. Marburg and Ravn virus infections do not cause observable disease in ferrets. J. Infect. Dis. 2018 Nov 22; 218: S471-4.

Kirchdoerfer RN, Wasserman H, Amarasinghe GK, et al. Filovirus structural biology: the molecules in the machine. Curr. Top. Microbiol. Immunol. 2017; 411:381-417. doi: 10.1007/82_2017_16.

Bhattarai N, Gerstman BS, Stahelin RV, et al. Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer. RSC. Advances. 2017; 7(37):22741-8.

Olejnik J, Hume AJ, Leung DW, et al. Filovirus strategies to escape antiviral responses. Curr. Top. Microbiol. Immunol. 2017; 411:293-322. doi: 10.1007/82_2017_13.

Zhang AP, Bornholdt ZA, Abelson DM, et al. Crystal structure of Marburg virus VP24. J. Virol. 2014; 88(10):5859-63.

Edwards MR, Johnson B, Mire CE, et al. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell. Reports. 2014; 6(6):1017-25.

Page A, Volchkova VA, Reid SP, et al. Marburgvirus hijacks nrf2-dependent pathway by targeting nrf2-negative regulator keap1. Cell. Reports. 2014; 6(6):1026-36.

Kirchdoerfer RN, Moyer CL, Abelson DM, et al. The Ebola virus VP30-NP interaction is a regulator of viral RNA synthesis. PLoS. Pathogens. 2016; 12(10): e1005937.

Wenigenrath J, Kolesnikova L, Hoenen T, et al. Establishment and application of an infectious virus-like particle system for Marburg virus. J. Gen. Virol. 2010; 91(5):1325-34.

Modrof J, Möritz C, Kolesnikova L, et al. Phosphorylation of Marburg virus VP30 at serines 40 and 42 is critical for its interaction with NP inclusions. Virology. 2001; 287(1):171-82.

Yen BC, Basler CF. Effects of filovirus interferon antagonists on responses of human monocyte-derived dendritic cells to RNA virus infection. J. Virol. 2016; 90(10):5108-18.

Guito JC, Albariño CG, Chakrabarti AK, et al. Novel activities by ebolavirus and marburgvirus interferon antagonists revealed using a standardized in vitro reporter system. Virology. 2017; 501:147-65.

Koehler A, Pfeiffer S, Kolesnikova L, et al. Analysis of the multifunctionality of Marburg virus VP40. J. Gen. Virol. 2018; 99(12):1614-20.

Kondoh T, Letko M, Munster VJ, et al. Single-nucleotide polymorphisms in human NPC1 influence filovirus entry into cells. J. Infect. Dis. 2018; 218: S397-402.

Gnirß K, Fiedler M, Krämer-Kühl A, et al. Analysis of determinants in filovirus glycoproteins required for tetherin antagonism. Viruses. 2014; 6(4):1654-71.

King LB, West BR, Schendel SL, et al. The structural basis for filovirus neutralization by monoclonal antibodies. Curr. Opin. Immunol. 2018; 53:196-202.

Dolnik O, Stevermann L, Kolesnikova L, et al. Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. Eur. J. Cell. Bio. 2015; 94(7-9):323-31.

Schudt G, Kolesnikova L, Dolnik O, et al. Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc. Nat. Acad. Sci. 2013; 110(35):14402-7.

Mittler E, Schudt G, Halwe S, et al. A fluorescently labeled Marburg virus glycoprotein as a new tool to study viral transport and assembly. J. Infect. Dis. 2018; 218: S318-26.

http://www.who.int/mediacentre/factsheets/fs_marburg/en/

https://www.cdc.gov/vhf/abroad/healthcare-workers.html

Geisbert TW, Hensley LE, Geisbert JB, et al. Postexposure treatment of Marburg virus infection. Emerg. Infect. Dis. 2010; 16(7):1119.

Geisbert TW, Hensley LE, Kagan E, et al. Postexposure protection of guinea pigs against a lethal Ebola virus challenge is conferred by RNA interference. J. Infect. Dis. 2006; 193(12):1650-7.

Enterlein S, Warfield KL, Swenson DL, et al. VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob. Agents Chemother. 2006; 50(3):984-93.

Zhu W, Zhang Z, He S, et al. Successful treatment of Marburg virus with orally administrated T-705 (Favipiravir) in a mouse model. Antiviral. Res. 2018; 151:39-49.

Ignatyev G, Steinkasserer A, Streltsova M, et al. Experimental study on the possibility of treatment of some hemorrhagic fevers. J. Biotech. 2000; 83(1-2):67-76.

Gear JS, Cassel GA, Gear AJ, et al. Outbreak of Marburg virus disease in Johannesburg. Br. Med. J. 1975; 4(5995):489-93.

Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. New. Eng. J. Med. 2001; 344(10):699-709.

Kolokol'tsov AA, Davidovich IA, Strel'tsova MA, et al. The use of interferon for emergency prophylaxis of Marburg hemorrhagic fever in monkeys. Bull. Exp. Biol. Med. 2001; 132(1):686-8.

Thi EP, Mire CE, Ursic-Bedoya R, et al. Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA. Sci. Transl. Med. 2014; 6(250):250ra116. doi: 10.1126/scitranslmed.3009706

https://www.nih.gov/news-events/news-releases/nih-supported-experimental-marburg-vaccine-prevents-disease-two-days-after-infection

Geisbert TW. Marburg and Ebola Hemorrhagic Fevers (Filoviruses). Mandell, Douglas, and Bennett's Principles and Practice of Infect. Dis. 2015:1995-1999.https://dx.doi.org/10.1016%2FB978-1-4557-4801-3.00166-1

Swenson DL, Warfield KL, Larsen T, et al. Monovalent virus-like particle vaccine protects guinea pigs and nonhuman primates against infection with multiple Marburg viruses. Expert. Rev. Vaccines. 2008; 7(4):417-29.

Riemenschneider J, Garrison A, Geisbert J, et al. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine. 2003; 21(25-26):4071-80.

Ignatyev GM, Agafonov AP, Streltsova MA, et al. Inactivated Marburg virus elicits a nonprotective immune response in Rhesus monkeys. J. Biotech. 1996; 44(1-3):111-8.

Jones SM, Feldmann H, Ströher U, et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med. 2005; 11(7):786-90.

Hevey M, Negley D, Pushko P, et al. Marburg virus vaccines based upon alphavirus replicons protects guinea pigs and nonhuman primates. Virology. 1998; 251(1):28-37.

Geisbert TW, Bailey M, Geisbert JB, et al. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates. J. Virol. 2010; 84(19):10386-94.

Swenson DL, Wang D, Luo M, et al. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin. Vacc. Immunol. 2008; 15(3):460-7.

Grant-Klein RJ, Altamura LA, Badger CV, et al. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Human. Vacc. Immunotherapeu. 2015; 11(8):1991-2004.

Martini GA. Marburg virus disease. Clinical syndrome. In Marburg virus disease 1971 (pp. 1-9). Springer, Berlin, Heidelberg.

Todorovitch K, Mocitch M, Klašnja R. Clinical picture of two patients infected by the Marburg vervet virus. In Marburg virus disease 1971 (pp. 19-23). Springer, Berlin, Heidelberg.

Hevey M, Negley D, Schmaljohn A. Characterization of monoclonal antibodies to Marburg virus (strain Musoke) glycoprotein and identification of two protective epitopes. Virol. 2003; 314(1):350-7

Warren TK, Warfield KL, Wells J, et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat. Med. 2010;16(9):991-4

Ignat'ev GM, Bukin EK, Otrashevskaia EV. An experimental study of possibility of treatment of hemorrhagic fever Marburg by Remicade. Vestn. Ross Akad. Med. Nauk. 2004; (11):22-4.

.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Research & Reviews: A Journal of Pharmacology