Open Access Open Access  Restricted Access Subscription or Fee Access

A comprehensive study on interactions between protein molecules and their importance in Drug Discovery

Pankaj Malhotra, Taneesha Gupta

Abstract


Protein-protein interactions (PPIs) are extremely specialized chemical and physical interactions that occur when two or more protein molecules come into contact with one another with the help of biochemical processes impacted by interactions between them, such as hydrogen bonding, electrostatic forces, and the hydrogen effect. Many interactions that occur in a specific bimolecular environment within a cell or living creature entail physical contact as well as molecular connections between chains. Protein-protein interactions have a major impact on both the target protein's function and a molecule's capacity to bind into the targeted sites that show beneficial effects. The majority of proteins and genes understand that the final phenotype is a result of several interactions. PPIs include signal transmission, muscle contraction, membrane transport including active and passive transport, cell metabolism, and electron transport proteins. The understanding of protein interaction networks is extremely beneficial to the study of the signal transduction pathway. The majority of proteins and genes regard the actions that result in the phenotype as a group of interplays. There are some methods to carry out the procedure which will include affinity purification, yeast 2 hybrid, tandem affinity purification, and other in vitro and in vivo methods, such as costs, times, and other variables. When it comes to annotating the function of pharmacological molecules, the resulting data sets are also noisy and have a larger proportion of false positives. As a result, in silico methods including chromosome proximity, gene fusion, sequence-based, and structure-based approaches were created. This study will help to know more about PPIs and the database that is available to carry out the further interactions that ia happened in the protein molecules and also helpfull to minimizing them.

Keywords


In Vitro and in vivo methodologies, protein-protein interaction, databases on protein-protein interaction, experimental and computational methods, therapeutic targets.

Full Text:

PDF

References


Braun P, Gingras AC. History of protein-protein interactions: from egg-white to complex networks. Proteomics. 2012;12(10):1478–1498.

Ofran Y, Rost B. Analysing six types of protein-protein interfaces. Journal of Molecular Biology. 2003;325(2):377–387.

Nooren IMA, Thornton JM. Diversity of protein-protein interactions. The EMBO Journal. 2003;22(14):3486–3492.

Zhang A. Protein Interaction Networks-Computational Analysis. New York, NY, USA: Cambridge University Press; 2009.

Othman, S., Richaud, P., Verméglio, A., & Desbois, A. (1996). Evidence for a proximal histidine interaction in the structure of cytochromes c ‘in solution: a resonance Raman study. Biochemistry, 35(28), 9224-9234. [6]Tsunogae,Y.,Tanaka,I.,Yamane,T.,Kikkawa,)J.I.,Ashida,T.,Ishikawa,C.,Watanabe,K.,Nakamura,S.&Takahashi,K.(1986)J.Biochem. (Tokyo)100,1673-1645.

Berggård T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. Proteomics. 2007;7:2833–2842.

Gonzalez MW, Kann MG. Chapter 4: Protein interactions and disease. PLoS Comput Biol. 2012;8:e1002819.

De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol. 2010;6:e1000807.

Pedamallu, C. S., & Posfai, J. (2010). Open source tool for prediction of genome wide protein-protein interaction network based on ortholog information. Source code for biology and medicine, 5, 1-6.

Skrabanek L, Saini HK, Bader GD, Enright AJ. Computational prediction of protein-protein interactions. Mol Biotechnol. 2008;38:1–17.

Hanukoglu I (1996). "Electron transfer proteins of cytochrome P450 systems". In Bittar EE, Jefcoate CR (eds.). Physiological Functions of Cytochrome P450 in Relation to Structure and Regulation. Advances in Molecular and Cell Biology. Vol. 14. JAI Press, Inc. pp. 29–55.

Brandt ME, Vickery LE (August 1993). "Charge pair interactions stabilizing ferredoxin-ferredoxin reductase complexes. Identification by complementary site-specific mutations". The Journal of Biological Chemistry. 268 (23): 17126–30.

Hanukoglu I (2017). "Conservation of the Enzyme-Coenzyme Interfaces in FAD and NADP Binding Adrenodoxin Reductase-A Ubiquitous Enzyme". Journal of Molecular Evolution. 85 (5): 205–218. [15] ooper G (2000). The cell : a molecular approach (2nd ed.). Washington DC: ASM Press. ISBN 978-0-87893-106-4.

Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology. 1999;17(10):1030–1032.

Uetz P, Glot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000;403(6770):623–627.

Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(8):4569–4574.

Gavin A-C, Bösche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002;415(6868):141–147.

Rohila JS, Chen M, Cerny R, Fromm ME. Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. Plant Journal. 2004;38(1):S172–S181. [21] Pitre S, Alamgir M, Green JR, Dumontier M, Dehne F, Golshani A. Computational methods for predicting protein-protein interactions. Advances in Biochemical Engineering/Biotechnology. 2008;110:247–267.

MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science. 2000;289(5485):1760–1763.

Tong AHY, Evangelista M, Parsons AB, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001;294(5550):2364–2368.

O’Connell MR, Gamsjaeger R, Mackay JP. The structural analysis of protein-protein interactions by NMR spectroscopy. Proteomics. 2009;9(23):5224–5232.

Gao G, Williams JG, Campbell SL. Protein-protein interaction analysis by nuclear magnetic resonance spectroscopy. Methods in Molecular Biology. 2004;261:79–92.

Uetz P, Glot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000;403(6770):623–627.

Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(8):4569–4574.

Semple JI, Sanderson CM, Campbell RD. The jury is out on “guilt by association” trials. Brief Funct Genomic Proteomic. 2002;1(1):40–52.

James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144(4):1425–1436.

Llères D, Swift S, Lamond AI. Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM) Current Protocols in Cytometry. 2007;12, Unit12.10

Rutherford SL. From genotype to phenotype: buffering mechanisms and the storage of genetic information. BioEssays. 2000;22(12):1095–1105.

Hartman JL, IV, Garvik B, Hartwell L. Cell biology: principles for the buffering of genetic variation. Science. 2001;291(5506):1001–1004.

Bender A, Pringle JR. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Molecular and Cellular Biology. 1991;11(3):1295–1305.

Ooi SL, Pan X, Peyser BD, et al. Global synthetic-lethality analysis and yeast functional profiling. Trends in Genetics. 2006;22(1):56–63.

Brown JA, Sherlock G, Myers CL, et al. Global analysis of gene function in yeast by quantitative phenotypic profiling. Molecular Systems Biology. 2006;22006.0001

Jones S, Thornton JM (January 1996). "Principles of protein–protein interactions". Proceedings of the National Academy of Sciences of the United States of America. 93 (1): 13–20.

Qin K, Sethi PR, Lambert NA (August 2008). "Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins". FASEB Journal. 22 (8): 2920–7.

Qin K, Dong C, Wu G, Lambert NA (August 2011). "Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers". Nature Chemical Biology. 7 (10): 740–7.

Malhis N, Gsponer J (June 2015). "Computational identification of MoRFs in protein sequences". Bioinformatics. 31 (11): 1738–44.

Westermarck J, Ivaska J, Corthals GL (July 2013). "Identification of protein interactions involved in cellular signaling". Molecular & Cellular Proteomics. 12 (7): 1752–63.

Pei D, Xu J, Zhuang Q, Tse HF, Esteban MA. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology. In: Kasper C, van Griensven M, Pörtner R. Bioreactor Systems for Tissue Engineering II: Strategies for the Expansion and Directed Differentiation of Stem Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 127-141.

Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S, Bridge A, Briganti L, Brinkman FS, Cesareni G, Chatr-aryamontri A, Chautard E, Chen C, Dumousseau M, Goll J, Hancock RE, Hannick LI, Jurisica I, Khadake J, Lynn DJ, Mahadevan U, Perfetto L, Raghunath A, Ricard-Blum S, Roechert B, Salwinski L, Stümpflen V, Tyers M, Uetz P, Xenarios I, Hermjakob H. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods. 2012;9:345–350.

Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K, Tyers M. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2015;43:D470–D478.

Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529–D541.

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011;39:D561–D568.

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613.

Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford) 2016;2016 .

Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42:D358–D363.

IMEx Consortium Curators. Del-Toro N, Duesbury M, Koch M, Perfetto L, Shrivastava A, Ochoa D, Wagih O, Piñero J, Kotlyar M, Pastrello C, Beltrao P, Furlong LI, Jurisica I, Hermjakob H, Orchard S, Porras P. Capturing variation impact on molecular interactions in the IMEx Consortium mutations data set. Nat Commun. 2019;10:10.

Goodacre N, Devkota P, Bae E, Wuchty S, Uetz P. Protein-protein interactions of human viruses. Semin Cell Dev Biol. 2020;99:31–39. [52] Kwofie SK, Schaefer U, Sundararajan VS, Bajic VB, Christoffels A. HCVpro: hepatitis C virus protein interaction database. Infect Genet Evol. 2011;11:1971–1977.

Guirimand T, Delmotte S, Navratil V. VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res. 2015;43:D583–D587.

Titeca, Kevin; Lemmens, Irma; Tavernier, Jan; Eyckerman, Sven (29 June 2018). "Discovering cellular protein‐protein interactions: Technological strategies and opportunities". Mass Spectrometry Reviews. 38 (1): 79–111.

Titeca, Kevin; Lemmens, Irma; Tavernier, Jan; Eyckerman, Sven (29 June 2018). "Discovering cellular protein‐protein interactions: Technological strategies and opportunities". Mass Spectrometry Reviews. 38 (1): 79–111.

Pagel, P.; Kovac, S.; Oesterheld, M.; Brauner, B.; Dunger-Kaltenbach, I.; Frishman, G.; Montrone, C.; Mark, P.; Stumpflen, V.; Mewes, H.-W.; Ruepp, A.; Frishman, D. (2005). "The MIPS mammalian protein–protein interaction database". Bioinformatics. 21 (6): 832–834.

Terentiev AA, Moldogazieva NT, Shaitan KV (December 2009). "Dynamic proteomics in modeling of the living cell. protein–protein interactions". Biochemistry. Biokhimiia. 74 (13): 1586–607.

Wodak SJ, Vlasblom J, Turinsky AL, Pu S (December 2013). "protein–protein interaction networks: the puzzling riches". Current Opinion in Structural Biology. 23 (6): 941–53.

Banerjee S, Velásquez-Zapata V, Fuerst G, Elmore JM, Wise RP (December 2020). "NGPINT: a next-generation protein–protein interaction software". Briefings in Bioinformatics. 22 (4).

Velásquez-Zapata V, Elmore JM, Banerjee S, Dorman K, Wise RP (April 2021). "Next-generation yeast-two-hybrid analysis with Y2H-SCORES identifies novel interactors of the MLA immune receptor". PLOS Computational Biology. 23 (4): e1008890.

Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P (December 2012). "Studying protein complexes by the yeast two-hybrid system". Methods. 58 (4): 392–9.

Stelzl U, Wanker EE (December 2006). "The value of high quality protein–protein interaction networks for systems biology". Current Opinion in Chemical Biology. 10 (6): 551–8.

Petschnigg J, Snider J, Stagljar I (February 2011). "Interactive proteomics research technologies: recent applications and advances". Current Opinion in Biotechnology. 22 (1): 50–8.

Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet AS, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási AL, Vidal M (2009). "An empirical framework for binary interactome mapping". Nat Methods. 6 (1): 83–90.

Battesti A, Bouveret E (December 2012). "The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli". Methods. 58 (4): 325–34.

Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J (July 2004). "Self-assembling protein microarrays". Science. 305 (5680): 86–90.

Ramachandran N, Raphael JV, Hainsworth E, Demirkan G, Fuentes MG, Rolfs A, Hu Y, LaBaer J (June 2008). "Next-generation high-density self-assembling functional protein arrays". Nature Methods. 5 (6): 535–8.

Laraia L, McKenzie G, Spring DR, Venkitaraman AR, Huggins DJ (June 2015). "Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting protein–Protein Interactions". Chemistry & Biology. 22 (6): 689–703.

Arkin MR, Wells JA (April 2004). "Small-molecule inhibitors of protein–protein interactions: progressing towards the dream". Nature Reviews. Drug Discovery. 3 (4): 301–17.

Chen J, Sawyer N, Regan L (April 2013). "protein–protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area". Protein Science. 22 (4): 510–5.

Jaiswal A, Lakshmi PT (9 September 2014). "Molecular inhibition of telomerase recruitment using designer peptides: an in silico approach". Journal of Biomolecular Structure & Dynamics. 33 (7): 1442–59.

Jaiswal A (2014). "AtTRB1–3 Mediates Structural Changes in AtPOT1b to Hold ssDNA". ISRN Structural Biology. 2014: 1–16.

Ivanov AA, Khuri FR, Fu H (July 2013). "Targeting protein–protein interactions as an anticancer strategy". Trends in Pharmacological Sciences. 34 (7): 393–400.

Hargreaves, David; Carbajo, Rodrigo J.; Bodnarchuk, Michael S.; Embrey, Kevin; Rawlins, Philip B.; Packer, Martin; Degorce, Sébastien L.; Hird, Alexander W.; Johannes, Jeffrey W.; Chiarparin, Elisabetta; Schade, Markus (23 May 2023). "Design of rigid protein–protein interaction inhibitors enables targeting of undruggable Mcl-1". Proceedings of the National Academy of Sciences. 120 (21): e2221967120.




DOI: https://doi.org/10.37591/rrjodfdp.v10i3.1358

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Research & Reviews: A Journal of Drug Formulation, Development and Production